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Abstract 

The first result of the MODIS (Moderate Resolution Imaging Spectroradiometer) 

vegetation continuous field algorithm, global percent tree cover, is presented.  Percent 

tree cover per 500 meter MODIS pixel is estimated using a supervised regression tree 

algorithm.  Data derived from the MODIS visible bands contribute most to discriminating 

tree cover.  The results show that MODIS data yield greater spatial detail in the 

characterization of tree cover compared to past efforts using AVHRR data.  This finer 

scale depiction should allow for using successive tree cover maps in change detection 

studies at the global scale.  Initial validation efforts show a reasonable relationship 

between the MODIS estimated tree cover and tree cover from validation sites.        
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Introduction 

Standardized maps of global forest cover serve many purposes, among them the ability to 

estimate parameters for use in biogeochemical modeling procedures (Bonan et al. 2002; 

DeFries et al. 2002), their use in delineating remaining intact forest and woodland tracts 

for conservation and forestry concerns (Matthews 2001) and in monitoring ecological 

succession and natural processes in forests.  Such maps also reveal land use 

intensification when compared to potential vegetation conditions, revealing the human 

impact on naturally forested ecosystems.   Repeated efforts over time can document 

change and aid in predicting future alterations to forest ecosystems.  The synoptic view of 

global satellite data sets affords the best possibility of creating such maps.  Initial efforts 

(DeFries et al. 1999; DeFries et al. 2000; Zhu and Waller 2000; Hansen et al. 2002) have 

demonstrated this capability. 

 

This paper describes the creation of a new global percent tree cover map based on 500 

meter data from the MODIS instrument on board NASA’s Terra spacecraft and 

represents the finest scale global forest information to date.   The MODIS sensor 

represents a significant gain in spatial detail due primarily to three facts.  The first is the 

finer instantaneous field of view of MODIS (250 and 500 meters squared) as compared to 

heritage AVHRR instruments (1 kilometer squared).  Secondly, due to the fact that 

MODIS was built with seven bands specifically designed for land cover monitoring, there 

is an improved spectral/spatial response compared to AVHRR.   This allows for greater 

accuracy in mapping due to more robust spectral signatures.  It also aids in reducing 

background scattering from adjacent pixels as the MODIS land bands were designed to 
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limit the impact of atmospheric scattering.  Thirdly, 500 meter red and near-infrared data, 

two bands important for land cover mapping, are created from averaged 250 meter 

imagery.  This resampling also reduces the percent contribution of adjacency effects on 

500 meter pixels for these bands, allowing for improved land cover estimates 

(Townshend et al. 2000).  The result is a data set which reveals far more spatial detail 

than previous efforts.  Maps such as the MODIS global continuous field of percent tree 

cover map should be of use to more varied scientific applications than previous coarse-

scale maps. 

 

Proportional per pixel tree cover estimates, or continuous fields of percent tree cover, are 

an improved thematic representation over discrete classifications (DeFries et al. 1995).  

Continuous field maps yield improved depictions of spatially complex landscapes and the 

ability to use successive depictions to measure change (Hansen et al. 2003).  Numerous 

methodologies exist to portray sub-pixel vegetative cover.  The techniques including 

fuzzy estimations of forest cover (Foody and Cox 1994), plant density isolines within 

multi-spectral scatterplots (Jasinski 1996; Zhu and Waller 2001), empirically calibrated 

estimates using multi-resolution data sets (Zhu and Evans 1994; Iverson 1989; DeFries et 

al. 1997), other multi-resolution estimates which incorporate spatial arrangement 

(Mayaux and Lambin 1997) and end-member linear mixture modeling (DeFries et al. 

2000; Adams et al. 1995; Settle and Drake 1993).  This paper builds on prior studies 

using AVHRR data to derive a global MODIS 500 meter percent tree cover map.  The 

approach is an empirical, multi-resolution calibration method which uses a regression tree 

algorithm to estimate percent tree canopy cover (Hansen et al. 2002).  The regression tree 
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is a non-linear, flexible model appropriate for handling the variability present in global 

vegetation phenology.  It also allows for the calibration of the model along the entire 

continuum of tree cover, avoiding the problems of using only endmembers for 

calibration.   

 

Data 

This initial attempt using MODIS imagery employed approximately a year of data.  The 

inputs consist of 8-day minimum blue reflectance composites which are made in order to 

reduce the presence of clouds in the data stream.  However, this procedure can lead to the 

inclusion of pixels within areas of cloud shadow.  To reduce the presence of cloud 

shadows, the data were converted to 40 day composites using a second darkest albedo 

(sum of blue, green and red bands) algorithm.  The inputs date from October 31, 2000 to 

December 9, 2001.  An extra forty day composite period was added to attempt to 

compensate for data gaps resulting from temporary sensor outages.  

 

The seven MODIS land bands were used as inputs: (blue (459-479 nm), green (545-565 

nm), red (620-670 nm) and near infrared (841-876 nm) and middle infrared (1230-1250 

nm, 1628-1652 nm, 2105-2155 nm)).   The MODIS composited data were transformed 

into annual metrics which capture the salient points in the phenologic cycle.   A total of 

68 metrics were derived from the composited data for bands 1-7 and the NDVI 

(Normalized Difference Vegetation Index).  These were used as the inputs for estimating 

percent tree cover.  Metrics such as maximum annual NDVI or mean growing season red 

reflectance represent generic signatures which can be used to map global vegetation.   
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The approach to deriving the metrics and training data is fully described in Hansen et al. 

(2002).   

 

Only the red and near infrared MODIS bands are close to the bandwidths in the long-term 

AVHRR sensor’s record.  In addition to these two bands, the AVHRR has one middle 

infrared and two thermal bands which record brightness temperatures and proved 

invaluable to mapping global land cover (Hansen et al. 2000).  The temperature bands act 

as surrogates for biome-level climatic variability.  For example, tropical drought 

deciduous woodlands can be stratified from tropical humid forests using thermal 

brightness metrics.  There is less evapotranspiration during dry periods in seasonal 

woodlands, and this causes an increase in surface temperature which is captured in the 

thermal bands.      

 

While the MODIS sensor has bands for measuring surface temperature (band 31 (10780-

11280 nm) and band 32 (11770-12270 nm)), they are not currently processed for use in 

land cover mapping.  There is a surface temperature product (Wan et al. 2002) which 

employs these bands, but its algorithms are land cover dependent, precluding its use in 

mapping surface cover.  Bands 31 and 32 of the MODIS instrument are used to derive 

surface temperature.  They mimic the AVHRR thermal bands and their inclusion in future 

reprocessing of the land products is recommended.   If this is done, these bands will be 

used in future mapping efforts.  In place of the missing MODIS thermal data, which act 

as a key regional stratification signal (Hansen et al. 2002), other features were included.  

First, a three region layer was included as a metric:  extra tropical north (approximately 



 6

23 degrees north and above), tropical (approximately between plus and minus 23 degrees 

latitude), and extra tropical south (approximately 23 degrees south and below).  Second, 

an archival 1km AVHRR channel 4 brightness temperature (10300 – 11300 nm) signal 

was used in metric form.  These data are from 1995-96 and represent the most recent 

globally processed thermal images at 1km for the AVHRR.  The thermal information is 

used within the algorithm to regionally stratify the globe, as previously stated, and should 

not be significantly affected by land cover change events since the time of the data’s 

acquisition.  The thermal data exists at a 1km spatial resolution and any land cover 

change in the interim would have to be very extensive to impact the thermal signal.  Even 

in these instances, the MODIS data at a finer scale correspond to the detail in the training 

data and these data should drive most of the characterization.  The AVHRR metrics and 

regional layers are used alongside the MODIS data inputs.  

 

The training data are derived by aggregating over 250 classified high-resolution Landsat 

images to the MODIS grid.  The Landsat images were classified into four classes of tree 

cover, each class having a mean percent tree cover label.  By averaging the Landsat tree 

cover strata to MODIS cells, a 500 meter continuous training data set was created.  This 

training data set contains over a million pixels which were systematically sampled to 

create a final training data set of 271 149 pixels at the 500 meter MODIS resolution.  

These training data have been used in a number of global land cover mapping exercises 

and descriptions of their derivation and distribution can be found in previous refereed 

studies (DeFries et al. 1998; Hansen et al. 2000; Hansen et al. 2002). 
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Methods 

The MODIS continuous fields of vegetation cover algorithm is described in Hansen et al. 

(2002).  It is an automated procedure which employs a regression tree algorithm 

(Venables and Ripley 1994).  The regression tree is a non-linear, distribution-free 

algorithm which is highly suited for handling the complexity of global spectral land cover 

signatures.  The training data are used as the dependent variable, predicted by the 

independent variables in the form of the annual MODIS metrics.  Outputs from the 

regression tree are further modified by a stepwise regression and bias adjustment per 

Hansen et al. (2002).  The derivation of tree cover in this way creates the possibility of 

using subsequent depictions to measure change.  Hansen et al. (2003) used such an 

approach in detecting change based on the long-term AVHRR 8km Pathfinder data set.  

 

The output of the algorithm is percent canopy cover per 500 meter MODIS pixel.  Here 

percent canopy refers to the amount of skylight obstructed by tree canopies equal to or 

greater than 5 meters in height and is different than percent crown cover (crown cover = 

canopy cover + within crown skylight).   The canopy cover definition is used in 

vegetation modeling exercises where light availability is an important parameter.  

Foresters, on the other hand, largely employ crown cover in measuring forest density.  

Crown cover is a better measure when performing areal inventories and is the variable 

used in many forest accounting procedures.     

 

To better understand this relationship, ongoing field work is being performed where both 

crown and canopy cover values are measured.  Initial work suggests that the mean forest 
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label used in deriving canopy cover (80 percent) training data corresponds to a 100 

percent forested area in terms of crown cover.  Figure 1 shows field data gathered from 4 

different sites to test this assumption and shows a reasonable relationship.  Of course, 

different tree types have different relationships between canopy and crown cover.  Fir 

trees, for example, generally have little light availability within the canopy.  Four 

subalpine fir sites from Colorado reveal a 0.9 ratio of canopy to crown cover.  Broadleaf 

Kalahari woodland trees in Western Zambia, on the other hand, have a greater presence 

of within crown gaps and a 0.76 ratio.  Information on stand species is not available at the 

global scale, however the 0.8 slope in Figure 1 suggests a reasonable estimate for 

converting between canopy and crown cover.  It is suggested that users interested in 

deriving the crown cover variable should divide the canopy cover layer by 0.8.   

 

Results 

The resulting regression tree yielded 109 terminal nodes. The largest node in terms of 

surface area maps most of the tropical broadleaf evergreen forest and accounts for over 

20 percent of dense (>40%) tree cover globally.  This is a fairly homogeneous cover type 

with a characteristic signature.  The regression tree delineated two subclasses of this 

forest type which represent more confused spectral signatures:  persistently cloudy areas, 

and areas of regrowth/disturbance.  The next largest node in terms of tree cover maps 

dense needleleaf boreal forest.  The final map is shown in Figure 2. 

 

The regression tree object can be studied to reveal which spectral information drives the 

tree cover characterization.  Table 1 shows which metrics add most to reducing the 
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overall sum of squares in delineating tree cover strata.  From Table 1, it can be seen that 

the mean red reflectance corresponding to the three greenest composite periods metric 

contributes most to mapping tree cover.  Of the overall reduction in the sum of squares, 

this metric alone contributes nearly 70 percent of the reduction.  The first split in the 

regression tree uses this metric and this single split accounts for 60 percent of the 

reduction in the sum of squares.  This metric is plotted against the resulting estimated tree 

cover for a 1000 pixel sample in Figure 3.  While this metric alone cannot map global 

tree cover, it is clear that increasing canopy density is correlated with lower red 

reflectance values due to the combined effects of canopy shadowing and chlorophyll 

absorption.  

 

Of interest is the fact that the visible MODIS bands (red, green and blue) all contribute 

significantly while the near and middle infrared bands largely do not.  Only band 6 

performs comparably with the visible bands, and is critical to mapping inundated 

grasslands.  This is a mid-infrared band with strong water absorption qualities which 

capture seasonal flooding events.  Figure 4 shows the top levels of the regression tree and 

how band 6 is used to map these grasslands.  While the infrared bands do not feature 

prominently, NDVI, derived using the near-infrared, is useful as seen in Table 1.  It 

should also be noted that many of the most used metrics of the visible bands are binned 

using NDVI to identify greenest times of the year. 

 

The thermal signal of the AVHRR was used repeatedly, as seen in Table 1, and 

underscores the need to include the MODIS thermal signal in the gridded land products.  
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The regional stratification was not as useful, only accounting for 1 percent of the overall 

reduction in the sum of squares.  Two kinds of metrics were of little use:  amplitude 

metrics for measuring the absolute spectral change of cover through the growing season 

and metrics associated with single peak greenness dates were largely unused by the 

regression tree. 

 

The map has greatly increased spatial detail as compared to AVHRR-derived maps.  

Figure 5 shows two areas as examples.  The human imprint on the landscape is more 

readily seen as compared to the AVHRR example.  There is the reasonable expectation 

that consecutive comparisons of annual maps should reveal change.  Discrete breaks in 

tree cover due to administrative status, such as national park, government owned lands, 

and trans-national variations in land use intensity are clearly evident throughout the map.  

Figure 6 shows a region of southeastern Africa where differential land use intensification 

is visible across national boundaries.  The rich detail present should be of use to land 

managers working at a regional scale and in need of an internally consistent map.  Fire 

history is present as well, particularly in the boreal zone as shown in Figure 7 by the 

number of quasi-elliptical patterns which correspond to known fire scars.  Further 

analysis of these data should reveal if this kind of map can be used to determine likely 

succession patterns, especially when other vegetation continuous field layers, such as leaf 

type are generated.   

 

The map will be updated annually and used to monitor change in global tree cover.  

Figure 8 shows the MODIS percent tree cover map with an overlay of a change study 
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using AVHRR data for 1982-1999 (Hansen et al. 2003).  MODIS data from the 250 and 

500 meter bands should capture change in forest cover more accurately.  Optimum 

change study intervals, whether annual or 5 to 10 year epochs, will be sought.  

Improvements to the methodology, such as the inclusion of MODIS thermal bands, will 

be implemented as soon as is feasible.  

 

Validation 

A multi-resolution mapping approach in conjunction with field data is being used at a 

number of sites to develop validation data for the percent tree cover map.  The exercise 

includes using field data along with IKONOS and Enhanced Thematic Mapper Plus 

(ETM+) data to create validation test areas the size of an ETM+ image.  Crown cover 

maps of IKONOS images are binned to ETM+ cells and used as continuous training data 

to map percent crown cover for 30 meter pixels.  This ETM+ crown cover map is then 

averaged to a 500 meter resolution to validate the MODIS map.  Performing this exercise 

in a wide variety of biomes will help to create a test bed against which successive 

iterations of the tree cover product can be validated.   The method has been initially 

tested for a Western Province, Zambia woodland site (Hansen et al. 2002) and is now 

being used in other areas.   

 

Figure 9 shows results from a Colorado, USA test area.  Averaging the product 

dramatically improves the validation measures.  The greater scatter at 500 meter spatial 

resolution is probably an artifact of resampling in the MODIS data.  As with all global 

data processing, a nearest neighbor scheme is used to reduce processing time.  This 
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approach leads to a geometric degradation of the signal as the process is repeated 

throughout the compositing process.  Averaging the product to a 1km spatial resolution 

appears to ameliorate some of these effects.   

 

Conclusion 

The first layer of the MODIS Vegetation Continuous Field product, percent tree canopy 

cover, has been generated and is available for use (see below).   The map reveals the 

improved spatial/spectral characteristics in the MODIS data compared to heritage 

AVHRR data.  This should lead to a wider variety of applications which employ the 

MODIS-derived maps.  Visible bands in the MODIS data provided the most 

discrimination along with NDVI and AVHRR brightness temperatures.  This points out 

the need to add thermal information to the MODIS land data stream.  Currently in 

production are other vegetation layers, including percent herbaceous/shrub, bare ground 

and tree leaf type and leaf longevity.   Upon completion, these maps should enhance the 

current understanding of global land cover distributions and provide a basis for 

monitoring land cover change globally.  

 

Data availability 

The MODIS product in tile format for canopy cover is available from the EROS data 

center at http://edcimswww.cr.usgs.gov/pub/imswelcome and per continent at 

glcf.umiacs.umd.edu.   
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Figure 1.  Plot of validation field data from four test areas, each covering a wide range of 
tree cover density, where y=0.79x and R2 = 0.95.  See Hansen et al. (2002a) for example 
from Zambia test area. 
 
Figure 2.  Final percent tree cover map in the Interrupted Goode Homolosine projection. 
 
Figure 3.  Plot of band 1 metric (mean red reflectance of 3 greenest compositing periods) 
versus estimate tree cover for a sample of 1000 pixels. 
 
Figure 4.  Regression tree object before stepwise regression and bias adjustment steps.  
Estimated percent tree cover at the intermediate nodes is shown within the ellipses.  The 
metric used at each split is shown below each of these nodes along with corresponding 
percent of reduction in the overall sum of squares.  Only one terminal node is shown as a 
rectangle, ~ indicates more splits in the lower portion of the regression tree. 
   
Figure 5.  Two subsets comparing the 2000-01 500 meter MODIS tree cover map with a 
1995-96 1km AVHRR tree cover map. a) is an area of Rondonia, Brazil from the 
AVHRR map, b) is the same area from the 2000-01 MODIS map, c) is an area along the 
French-German border from the AVHRR map, and d) the same area from the MODIS 
map.  
 
Figure 6.  Transnational boundary differences in percent tree cover.  The highest 
population density in this subset is found in Malawi, which is shown to have greater 
clearing of tree cover than adjacent countries.  Mozambique is less disturbed as 
evidenced by Tete province jutting into the more intensively used landscapes of 
Zimbabwe, Zambia and Malawi.  The arm of Congo extending into Zambia’s copper belt 
is less disturbed than the heavily developed lands across the border. 
 
Figure 7.  MODIS data with burn scar overlay.  Black vectors represent burn scars from 
1990-2000, blue 1980-1989, red, 1970-1979, magenta 1960-1969 and orange 1950-1959.  
More recent scars are fairly well delineated in the percent tree cover map.  Data is from 
Murphey et al. (2000) and consists of a combination of ground and aerial surveys and 
satellite image intepretations. 
 
Figure 8.  A portion of South America tree cover with deforestation hotspot overlay.  The 
change areas are from a 19 year study of 8km AVHRR data (Hansen et al. 2003).  
 
Figure 9. Validation data from Colorado, USA, WRS 035/032.  a) Plot of 500 meter 
MODIS estimated percent tree crown cover versus 500 meter crown cover validation data 
derived from IKONOS/Enhanced Thematic Mapper Plus/field data study, y=0.99, 
R2=0.81.  b) Data averaged to a 1km meter resolution, y=1.05x, R2=0.89.  c) Data 
averaged to a 2km spatial resolution, y=1.06x, R2=0.94.  d) Validation data percent tree 
crown cover.  e) 500 meter MODIS estimated percent tree crown cover. 
 
 
 





















Table 1.  Percent contribution to the overall reduction of sum of squares in the regression 
tree structure aggregated in the following ways:  a) regression tree splits aggregated by 
the band used in the metrics with total number of splits in parentheses, b) splits 
aggregated by individual metric with total number of splits in parentheses and only the 
best ten metrics shown, c) metrics used in the 10 best individual splits in reducing overall 
sum of squares.  These splits are highlighted in the tree structure of Figure 4.  For mean 
metrics the span of time is listed by number of 40-day composites.  For MODIS bands 1-
7, metrics are derived by looking at dark albedo values.  For example, mean 1-3 band 6 
represents the mean of the 3 darkest band 6 composite values.  NDVI and temperature 
means are based on finding the maximum ranked composites.  For example, mean 1-5 
NDVI is the 5 highest NDVI composites averaged.  The only exceptions to this are the 
metrics binned using NDVI as a reference.   For example, in mean 1-3g band 1, the g 
indicates that the band 1 values are found which correspond to the 3 greenest composites 
based on ranked NDVI values.  Thus, mean 1-3g band 1 is a mean red reflectance value 
which corresponds to the 3 greenest composites.   
 
Percent reduction in overall sum 
of squares per metrics aggregated 
by band 

Percent reduction in overall sum of 
squares per individual metric  

Percent reduction in overall sum of 
squares per regression tree split 

Band 1 metrics (9) 68.1 Mean1-3g band 1 (4) 67.7 Mean 1-3g band 1  60.1 
Band 3 metrics (21) 9.6 Mean1-3g band 3 (2) 6.7 Mean 1-3g band 1  7.3 
Band 4 metrics (20) 5.4 Mean 1-3 temperature (6) 4.4 Mean 1-3g band 3 6.7 
Temperature metrics (13) 5.1 Mean 1-3 band 6 (3) 3.6 Mean 1-3 band 6 3.3 
NDVI metrics (14) 4.5 Rank 3 band 3 (16) 2.7 Mean 1-3 temperature 2.4 
Band 6 metrics (5) 3.8 Mean 1-3 band 4 (5) 2.7 Mean 1-3 temperature 1.8 
Band 5 metrics (10) 1.3 Mean 1-8 NDVI (3) 2.2 Mean 1-3 band 4 1.4 
Regions (7) 1.0 Mean 1-8 band 4 (5) 1.6 Mean 1-8 NDVI 1.2 
Band 2 metrics (5) 1.0 Mean 1-5 NDVI (6) 1.3 Mean 1-5 NDVI 1.1 
Band 7 metrics (4) 0.2 Regions (7) 1.0 Mean 1-8 NDVI 0.9 
 


